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Among the qualities that distinguish dance from other types of human behavior and interaction

are the creation and breaking of synchrony and symmetry. The combination of symmetry and

synchrony can provide complex interactions. For example, two dancers might make very different

movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining

patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance,

and the nature of the perceptions and responses of the dancers. However, such complex symmetries

are often difficult to quantify.

This paper presents three methods – Generalized Local Linear Approximation, Time-

lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and

synchrony in motion-capture data as is it applied to dance and illustrate these with examples from

a study of free-form dance. Combined, these techniques provide powerful tools for the examination

of the structure of symmetry and synchrony in dance.

INTRODUCTION

The Oxford English Dictionary defines dance in the following manner:

dance n. A rhythmical skipping and stepping, with regular turnings and movements of
the limbs and body, usually to the accompaniment of music.
dance v. intr. To leap, skip, hop, or glide with measured steps and rhythmical movements
of the body, usually to the accompaniment of music, either by oneself, or with a partner
or in a set.

This definition, while reasonable for the common use case, leaves much to
be desired in terms of specificity. More precisely, the terms ‘rhythmical’ and
‘regular’ are left quite unclear, as is the set of possible relationships between
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music and dancer that might acceptably be considered ‘accompaniment’, or
more specifically, might constitute dancing to a musical selection. Similarly,
the concept of dancing with a partner is left vague and unanswered. This paper
proposes a series of metrics by which these relationships, ‘rhythmical’ stepping
and ‘regular’ turnings and movements might be quantified. We extend these
techniques to the examination of relationships between the movements of several
people dancing together. The tools presented here may also be easily extended
to take into account the prospect of musical accompaniment, although we do not
extend this last analysis to the general case.

Recent advances in technology, specifically in motion capture technology
have made it possible to record and codify dance in a manner previously
impossible; dancers’ movements may be recorded every hundredth of a second
to the millimeter of movement and fraction of a degree of rotation. This sort
of recording provides a wealth of data, but in a format that is difficult to
comprehend without additional tools. We propose a set of tools that may help
to understand motion capture data from dancers in terms of how ‘rhythmic’
and ‘regular’ a dance may be. We present a means of codifying synchrony
and symmetry (how ‘rhythmic’ and ‘regular’ a dance may be), and to provide
some quantification of these ideas. The methods presented here are primarily
for visualization and are intended to provide a new means of thinking about
and making visible the patterns of synchrony and symmetry as they change
across time. Through applications of advanced techniques such as surrogate data
methods (Theiler, Eubank, Longtin, & Galdrikian, 1992), it is possible to apply
statistical tests to these measures and thus to code changes mathematically in
the rhythmic structure or regularity of the dance. This allows scientific analyses
of a wide variety of manipulations to be performed. Statistical applications are
outside the scope of the current paper, which is intended primarily as a basic
tutorial of the exploratory and visualization of motion capture data from dancers.

Definitions

We define symmetry as identical or near-identical position or behavior at two
different locations. For example, if a person were to lift both his left and
right arms in the same way at the same time, this would result in a symmetric

movement. Symmetry shows itself in several different forms. If two people facing
the same direction raise the same arm at the same time, this would be translational

symmetry; that is, identical motions shifted along-one or more dimensions from
one another. In our original example, a dancer raised his left and right arms – this
would be mirror symmetry, or a motion reflected rather than translated. Mirror
symmetry can be thought of in terms of distance; as one moves away from the
plane of reflection, one encounters identical shapes in either direction.

These translations and reflections need not be spatial in nature; over the
course of a dance it is also possible to show temporal symmetry, or symmetry across
time. For example, if a dancer made a repeated circle with one hand, then
repeated the motion again, this would show temporal symmetry of a translational
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variety. The dancer has made an identical motion, but shifted forward in time
rather than space. A ‘regular’ motion might be the result of the maintenance of
temporal symmetry. The result would be a periodic repetition of a movement
or series of movements. The dancer might perform the repeated motion with
slight variations each time—imperfect but sustained temporal symmetry. If the
person were to first make a motion forward, and then the same motion in reverse,
this would be a form of temporal mirror symmetry. Like spatial mirror symmetry,
the motion would be identical in either direction at the same distance from a
reflection point. In temporal mirror symmetry, this means that the motion would
look the same two seconds before the reflection time as it would two seconds after
the reflection point.

Further, symmetry need not be restricted to position; it could exist similarly
in the domain of velocity or acceleration. Here we define velocity as the
instantaneous signed rate of change in position, and acceleration as the signed
change in velocity. Conceptualizing velocity and acceleration is often best
thought of in the context of a vehicle. The location of a vehicle on the road
surface is the car’s position. The needle on the speedometer shows its speed-
the magnitude of the velocity vector. Change in the speedometer needle’s angle
indicates acceleration. A highly positive rate of acceleration could be achieved by
pressing the accelerator pedal hard, while a highly negative rate of acceleration
could be achieved by pressing the brake hard.

Two motions that showed identical velocity profiles might show a sort of
translational symmetry of velocity. For example, if two people began to move with
increasing speed over the course of a minute and then slowed suddenly, they
would show symmetry of velocity. The same velocity profile could be observed at
two different moments in time. From a different perspective, if two people moved
such that one always sped up while the other slowed down, this might represent a
mirror symmetry of velocity. Similar analyses could be applied for acceleration,
or the rate of change of acceleration; however, human movements tend to
minimize change in acceleration (Flash & Hogan, 1985). We will therefore
discuss the estimation of acceleration, but will focus our examples on position
and velocity. The techniques we present can also be applied to acceleration data.

In order to account for the occurrence of two events at a single moment
in time, we also define the term synchrony to indicate the onset or continuous
action of an event at the same time as another. For example, a troupe of dancers
might simultaneously begin to move. While each might move in a different way
and a different direction, they might all move for the same span of time, thus
starting and stopping their movements simultaneously. These would then be
considered synchronous movements. Movements might be synchronous without
being symmetric, or might be symmetric without being synchronous. Similarly, a
movement might be timed to correspond with the downbeat of a musical phrase,
or a dancer moving to a symphonic rhythm might begin a dance movement at
the onset of a musical phrase, say, by a flute. When the flute ended its movement,
the dancer might end his movement, thus completing his movement in synchrony
with the flute. Symmetry of velocity and symmetry of acceleration can be considered a
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special case of synchrony. To the extent that velocity and acceleration match in
time, two movements can be considered to be happening simultaneously.

In the case of a repetitive motion, synchrony takes on a slightly different
meaning. Because there is no clear indication when a repetition of the motion
begins or ends, two repetitive motions may be considered synchronized if they
take the same amount of time to repeat. That is, if the period of temporal synchrony

is identical between the two, we will consider this a form of synchrony.
Finally, there is no reason to limit either symmetry or synchrony to a single

domain. One dancer’s legs might show symmetry in velocity with the arms of
another. A dancer might begin her movements at the onset of a trumpet solo,
increase her velocity as the volume of the solo increased, and decrease it as the
sound faded. The result would be a cross-domain symmetry between the volume of
the trumpet and the velocity of the dancer. Because of the difficulty in directly
comprehending cross-domain symmetry as a form of symmetric movement, it is often
easier to think of it as a special case of synchrony.

In the expression of dance, especially between two individuals or between
an individual and a musical composition, it is expected that both symmetry and
synchrony will be created and destroyed repeatedly. The pattern of symmetry

and synchrony formation and symmetry and synchrony breaking specific to a dance
composition provides one way to characterize a particular dance.

Previous work has studied the self-similarity of dancers’ movements in
the context of music using component transformations such as Principal
Components Analysis, Canonical Correlation Analysis (Caramiaux, Bevilacqua,
& Schnell, 2010), or classification systems like Linear Discriminant Analysis
(Naveda & Leman, 2010) to break dance down into repeating component parts.
Others have used methods like periodicity analysis (Naveda & Leman, 2009)
or Recurrence Quantification Analysis (Varni, Mancini, Volpe, & Camurri,
2010) to look at periodicity and temporal symmetry in dance. Leman and
Naveda (2010) used a combination of autocorrelation and principal components
analysis to build a spatio-temporal view of synchronization of dance gestures and
movement. A similar system was constructed by Toiviainen et. al. (2009), using a
combination of component transformations and velocity-based energy measures
to examine the metric structure of movement to music. The current work
expands on these endeavors by demonstrating the use of windowing techniques
for the visualization of symmetry and synchrony across the structure of the dance,
and by introducing new transformations to allow examination of these constructs
at the levels of velocity and acceleration.

This paper is intended to present several methods for the examination
of symmetry and synchrony in dance movements. The methods presented are
equally applicable to any continuous streams of data that is both dense (i.e.,
sampled often) and numerous (i.e., many samples per person), such as EEC
data. The examples presented focus primarily on the comparison of movements
in the position and velocity domains; these are used primarily because they
are accessible to novice users of these methods. Cross-domain symmetry and
symmetry of acceleration may be investigated using the same techniques.
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Examples

In order to examine the patterns of symmetry and synchrony exhibited by a
dance composition, it is first necessary to record the composition in a format
amenable to analysis. This paper will focus primarily on motion-capture data,
although data of other formats might be usable in similar analyses.

Example data for this paper come from individuals in an psychology
experiment at a small private midwestern USA university. The individuals whose
data is to be displayed were untrained dancers dancing to repeated rhythmic
stimulus which was presented over headphones. One individual presented here
danced alone, while a second pair danced together. In each case, participants
were fitted with 8 magnetic motion capture sensors held against the body by
neoprene-and-velcro compression straps. More information on the apparatus is
available in more detail below. Participants were instructed to ‘Move in whatever
way seems natural to you.’ In the dyadic case, one participant was instructed
to lead the dance, and the other to follow. For ease of memory, those dancers
dancing alone will be referred to in this work as Andrew or Alice, while the two
dancing in a dyad will be referred to as David and Donna.1

Untrained dancers and the designation of a single lead are used for this
illustration because the movements made were simple and repetitive, and clearly
show several of the features of interest. The measures and techniques presented
here should be well-suited to the analysis of dance at any level of expertise.
More intricate lead-follow relationships can also be examined, as described in
the discussion of windowed cross-correlation, below.

DATA TRANSFORMATIONS AND INITIAL SETUP

One difficult issue in the handling of motion-capture data is the lack of a
meaningful coordinate system. Several transformations are often needed to turn
motion capture data into a more meaningful form. While a complete discussion
of methods for cleaning and normalizing motion-capture data lies outside the
scope of this paper, two essential transformations will be discussed: (1) Centering
and Hierarchy of Support, and (2) Estimation of Velocity and Acceleration.

Example Setup

In our examples, motion-capture data were recorded using an Ascension
Technologies MotionStar magnetic-field-based motion tracking device. Eight
sensors were attached to each individual: one at the back of a baseball cap
fitted snugly on the head, one held to the sternum with a neoprene and
velcro vest, one held to each forearm just below the elbow using a neoprene
and velcro compression strap, one held to the back of each hand using an
elastic weightlifting glove, and one held to the front of each shin just below
the knee using a neoprene and velcro compression strap. Each sensor was an
approximately 1.5 cm cube attached by a long, flexible electronic wire to the
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Head Sensor

Sternum Sensor

Elbow Sensor

Hand Sensor

Knee Sensor

Fig. 1. motion capture sensor placement.

central MotionStar AD converter computer. The sensors were sampled at 80 Hz
and recorded position information with 6 degrees of freedom (XYZ position
and orientation) with an accuracy of approximately 1.5 mm in position and 2
degrees in orientation. A diagram of the motion capture sensor arrangement as
it was used is shown in Figure 1. This arrangement of sensors has been used in
the psychological literature for studies of conversation and dance (Boker et al.,
2011; Boker & Rotondo, 2003; Ashenfelter, Boker, Waddell, & Vitanov, 2009,
for example).

We will designate the location of motion sensor i at time t along x, y,
and z coordinates as the column vector Pi (t ) = [xi (t ), yi (t ), zi (t ), 1 ]T , and the
orientation as Oi(t), a matrix with four rows and four columns2. The entire
uncentered orientation and location can be represented by the matrix P∗

i (t ),
created by multiplying the two together.

Many other motion-capture systems are in use today, using a wide variety
of technologies. Most are capable of at least reporting position and orientation of
the tracked points. Many will also automatically perform transformations into a
centered frame of reference.

Provided the system is able to provide position and orientation information
for the various points in some manner, the mechanisms here can all be used.
Transformation into the representations used here are specific to the motion
tracking system used, but are widely available.
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(a) (b)

Fig. 2. A visualization of motion-capture data (a) before centering and (a) after centering.
The shape of a human figure is much more noticeable after centering. Each motion-capture
sensor is represented by a short line showing the sensor’s location and orientation.

Centering and Hierarchy of Support

Figure 2(a) shows a plot of raw motion capture data from a person standing,
wearing the sensors. At first, it is not clear what arrangement the sensors have
to each other, or where they lie on the human figure. In order to induce a clear
coordinate system, we must first define a coordinate system. In this case, we will
use the initial position of the chest sensor to be our (0, 0, 0) location, and use
its orientation to be the orientation of our coordinate grid. This computation
can be carried out using Equation 1. The result is a much more comprehensible
parameterization of the data, as visualized in Figure 2(b).

Pi = P∗
i
P−1

chest
(1)

A problem may arise in the use of data centered in such a way. When
comparing the movements of a person’s arm and hand, for example, a great
deal of symmetry in motion will be detected – that is, when the arm moves, the
hand moves with it. This is because of the hierarchy of support that structures the
human body – it is difficult to move one without the other. In order to remove this
common motion, we will center each sensor on the body to show its difference
from the sensors to which it is connected. Continuing to use the chest as our best
measure of overall body movements, we will center the elbow, head, and knee
sensors to the chest, and the wrist sensors to the elbow. In this way we ensure that
shoulder movement will be measured only by the arm sensor and not by both the
arm and wrist.

More advanced methods exist for transforming raw motion capture data.
The most common approaches uses an error-minimization approach such as
least-squares to fit the raw sensor data to a model of the human body (O’Brien,
Bodenheimer, Brostow, & Hodgins, 2000) or a less-constrained model of joint
motion (Schwartz & Rozumalski, 2005; Ehrig, Taylor, Duda, & Heller, 2006).
While a full discussion of these transformations is outside the scope of this paper,



290 TIMOTHY R. BRICK AND STEVEN M. BOKER

it is worth noting that data resulting from such transformations can be utilized in
the analyses discussed here.

Estimation of Velocity and Acceleration

In order to examine symmetry and synchrony of velocity and acceleration, it is
first necessary to extract a measure of these quantities. To do so, we will utilize
a method known as Generalized Local Linear Approximation (GLLA) (Boker,
Deboeck, Edler, & Keel, 2010). GLLA is a variant of a mathematical filter known
as a Savitzky–Golay filter (Savitzky & Golay, 1964), and uses the measurements
of position across a short window of time to estimate the position, velocity and
acceleration, at the center of the window. GLLA has been used previously in
the analysis of motion-capture data (Ashenfelter et al., 2009; Boker et al., 2009,
2011).

In order to apply the GLLA transformation, we must first convert the
time series of each of our measurements into a series of short windows through
a process known as time-delay embedding (Sauer, Yorke, & Casdagli, 1991).
To illustrate time-delay embedding, first consider a single measurement, the
position along the x-axis. Across the duration of the dance, a large number
of measurements of this position will be collected. We will designate the
measurement at time t as x (t ). Our initial measurement thus appears as a column
vector X, as shown in Equation 2.

X =




x(1)
x(2)
x(3)
x(4)

...
x(n)




(2)

Time-delay embedding expands this matrix by transforming each row into
a short window of time-points rather than a single time point. In this case, we will
use window made up of 3 time points, also referred to as an embedding dimension of
3, as shown in Equation 3.

X(3) =




x(1) x(2) x(3)
x(2) x(3) x(4)
x(3) x(4) x(5)
x(4) x(5) x(6)

...
...

...
x(n − 2) x(n − 1) x(n)




(3)

Conceptually, GLLA estimates velocity using a weighted average of the
changes in position at the surrounding measurements. To illustrate, we will use
an example with an embedding dimension of 3. In this example, GLLA estimates
the velocity at time first t by calculating the difference in position between time
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Estimated Velocity

x(t)

x(t-1)

x(t+1)

Fig. 3. An illustration of generalized local linear approximation.

t − 1 and time t , and averaging that with the change in position between time
t and time t + 1, as shown in Figure 3. If the acceleration across the very
short time period of measurement is close to constant, then this average should
produce a very accurate estimate of the speed at time t . The acceleration is then
estimated as the difference in slope between the (t − 1) → t and t → (t + 1)
segment. The resulting equations would look like Equation 4 and Equation 7,
below. Note that in these equations, ẋ(t ) represents the velocity of x at time t ,
and ẋ(t ) represents the acceleration at time t .

ẋ(t ) = (x(t ) − x(t − 1)) + (x(t + 1) − x(t ))
2

(4)

= x(t + 1) − x(t − 1) + (x(t ) − x(t ))
2

(5)

= x(t + 1) − x(t − 1)
2

(6)

ẍ(t ) = (x(t ) − x(t − 1)) − (x(t + 1) − x(t )) (7)

= −x(t + 1) − x(t − 1) + x(t ) + x(t ) (8)

= −x(t + 1) + 2x(t ) − x(t − 1) (9)

Mathematically, the derivatives can be estimated in a single step by
multiplying the embedded matrix X(3) by a carefully constructed weight matrix
W. Element wij at row i and column j of W can be calculated using Equation
10. The resulting matrix W for the three-dimensional example case is
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W =

0 −0.5 −1

1 0 2
0 0.5 −1


 (10)

Postmultiplying X(3) by W,

X� = X(3)W (11)

results in a matrix with three columns: position, (x (t )) in column 1, velocity,
((ẋ(t )), in column 2, and acceleration, (ẍ(t )), in column 3.

A similar result can be calculated for higher rates-of-change (for example,
the rate of change of acceleration, known as jerk). While it is possible to use these
higher moments in the analyses that follow, human movement often minimizes
sudden changes in acceleration, so jerk is generally quite low (Flash & Hogan,
1985). As a result, we will focus our analyses at the levels of position, velocity,
and acceleration.

The large number of columns of motion capture data can often be
overwhelming. To reduce the dimension of the data examined, it is sometimes
helpful to use aggregate measures of motion. For example, the Root Mean Square

(RMS) velocity can be used to measure the ‘quantity of motion’ made by a
person across their entire body. The RMS velocity therefore provides reasonable
measure of overall activity, and can be helpful for locating regions of synchrony
between individuals. RMS velocity of the n sensors on a single person can be
calculated as

RMSV (t ) =
√∑n

i=1 (ẋi (t )2 + ẏi (t )2 + żi (t )2)
n

. (12)

RMS acceleration can be calculated similarly, and provides a measure of the
amount of change in velocity across the entire body. RMS position is less helpful;
it is recommended that the sternum sensor position be used instead.

In order for GLLA to approximate velocity and acceleration accurately,
we must make the assumption that the movement of each sensor is locally linear;
within the time window examined the motion of the sensor is assumed to
be smooth, with no discontinuities. Because motion capture systems generally
function at speeds much faster than human movement, this assumption is not
unreasonable.

Encoding Music

In order to make comparisons between the musical form and the movements
in dance, it is also necessary to transform the music into a numerical sequence.
For the majority of the paper, we will focus only on the rhythmic aspects of
music, and will denote synchronization with the music in terms of matching the
measure structure only. Other common methods of digitizing a musical score
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Fig. 4. A perfect repetitive motion, (a) shows a perfect simulated motion capture signal,
graphed as position against time, (b) shows the global lagged autocorrelation function.
Peaks at an autocorrelation of 1 indicate a perfect repetition of the movement at a given lag.

include measuring pitch contour, pitch set, intensity, beat structure, fundamental
frequency, or the raw sonic waveform (Dowling, 1994; Boersma, 1993; Drake,
1998; Shaffer & Todd, 1994). If one of these methods is used, it is recommended
that the sampling rates of the musical and motion capture data be resampled to
be the same rate. Once this is done, the musical data can be included in analyses
the same way as any other stream of motion data.

SYMMETRY

To continue our exploration of symmetry and synchrony, we begin with the
detection of the simplest forms of symmetry. Consider a dancer making rhythmic
motions with her left arm. If we plot the horizontal position of her hand relative
to her body across time, we might see a curve that look something like the
idealized curve shown in Figure 4(a). Note that individual movement curves are
unlikely to look exactly the same. This is, at least in part due to the fact that the
arms of two dancers are unlikely to be exactly the same length. The longer the
dancer’s arm the larger the range of motion.

Global Correlation

Because of these differences between people, it is not advisable to simply measure
the difference between their motions as a measure of symmetry. Instead, we need
a measure that is invariant to scale – that is, a measure that will not be biased
by the slightly larger reach of person 1. Correlation (specifically, the Pearson
product-moment correlation coefficient) is just such a measure. Correlation
provides a scale-invariant method of determining the extent to which two streams
of data covary; that is, if one always rises when the other rises and sinks when the
other sinks, the correlation will be near one. If the two streams are independent,
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the correlation will be near zero. If one rises when the other sinks and vice – versa,
as would be the case in the event of mirror symmetry, their correlation will be
near negative one. The correlation can be calculated using Equation 13 (Cohen,
Cohen, West, & Aiken, 2003).

ri (t ) = n
∑n

t=1 xi (t )yi (t ) −
∑n

t=1 xi (t )
∑n

t=1 yi (t )√
n

∑n

t=1 (xi (t ))2 − (∑n

t=1 xi (t )
)2

√
n

∑n

t=1 yi (t )2 − (∑n

t=1 yi (t )
)2

(13)

Correlations are not linear measures and cannot be combined by addition
or averaged with a mean because they are bounded between positive and
negative one. If several correlations need to be combined into a single grand
correlation value, this can be done by converting the correlations into Fisher’s
Z scores, averaging the transformed values, and converting them back into
correlations. Note that using this technique, a limb with one dimension of perfect
symmetry and one dimension of perfect mirror symmetry will show a grand
correlation of zero, since the two will cancel out. To provide a better estimate
of the amount of precision in such a comparison, the root mean square of the
Z transformed values (shown in Equation 15) may be a better measure. The Z
scores and RMS Z can be calculated as

Z = 1
2

ln
(

1 + ri

1 − ri

)
(14)

RMSZ =

√√√√∑n

i=1

(
1
2

ln
(

1+ri

1−ri

))2

n
(15)

where r designates the correlation.
The overall correlations can give a rough measure of how similar two

dances were. The correlation between two recordings of a dancer performing
the same routine will give some information about how precisely the two
performances matched in both space and time.

In many cases it will be unhelpful to know simply whether one dancer is
performing the same motions as another at the same time. Instead, it is helpful
to see mirroring and symmetry across time. In order to answer these sorts of
questions, we must introduce a new technique.

Lagged Autocorrelation and Self-symmetry

Imagine a simple dance: a dancer simply rocks back and forth at a steady
rhythm, reaching the same point in her rotation at each measure of the music.
To examine the rhythmicity of this movement, we must search for temporal self-

symmetry. That is, we are seeking those times at which the dancer’s movements
look most similar to themselves a a previous time.

Self-symmetry can be identified using the same correlation metric described
above. Instead of correlating two different streams of movement, however, we
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Fig. 5. Autocorrelation from Andrew’s dance.

examine how a single stream correlates with itself across time. To do this, we
make a copy of the original movement, and delay it in time against itself, first
by one, then two, then three samples, and so on. At each level of delay, we can
calculate a new correlation coefficient, which we will call the lagged autocorrelation

at that delay.
At a lag of 0, the autocorrelation will always be a perfect 1.0 – a sequence

always perfectly matches itself. As we move further and further out from lag
0, the correlation will fall away from a perfect correlation of 1.0. If there is
rhythmicity in the movement, at even longer lags, the correlation will begin
to increase again; the dance will again resemble itself. The plot in Figure 4
shows movements similar to what our hypothetical dancer might make if she
were perfectly matching her movement each time, and the autocorrelation plot
that goes with it. In the autocorrelation plot, the y-axis denotes the correlation
coefficient, while the x-axis denotes the delay between the original data and
the lagged data. Negative delay means that the lagged data is shifted the other
way; it begins earlier than the original data stream3. The timing of the music is
simplified here, represented as dotted lines for each musical measure. Notice that
the motion repeats once for each measure, as shown by the peaks in correlation
at that interval. The distance between peaks indicates the period of the rhythmic
movement-the time taken for the motion to repeat itself.

Analyzing two example dancers from our experiment, we are now able
to deduce a few properties of their movements. In one trial, Andrew moves
rhythmically to the music provided, matching the beat almost exactly, but often a
few milliseconds too late (see Figure 5). In a different dance, Alice moves at twice
the meter of the music, matching her own movements at every measure and half-
measure (see Figure 6). We can also see that as the lag increases, the correlation
at the peaks drifts slowly downward. This indicates that as time goes on, our
dancers’ movements drift from their original locations, so their later movements
look less and less like their original ones. Here, she exhibits a decaying temporal

symmetry; her movements are highly, but not perfectly symmetrical across time.
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Fig. 6. Autocorrelation from Alice’s dance.
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Fig. 7. Autocorrelation of left arm and torso from Alice’s dance.

The asymmetry compounds as the dance continues, so that the movement four
cycles later may be qualitatively different, although each individual movement is
quite similar to the one before.

Comparisons across limbs can be interesting at this level as well; symmetry,
especially in terms of velocity, can be common between limbs. In Figure 7, we
notice that Alice is moving her torso in time with the measure of the music,
but her arm (in this case, her left elbow) at twice that rate. Both movements
synchronize to the same rhythmic stimulus, but show different periods of
movement. Note that these movements may be very different in character; it
is only the structure of temporal symmetry that they exhibit that shows this
doubling relationship.

Windows

Our examples and techniques so far have been global examinations of an
entire dance as a unit, as though the dance were a single movement repeated
numerous times. While this may be accurate for the controlled space of our
example, it is certainly not the case for professional dancers, where in some
dances each movement may be unique. Figure 8 shows a situation in which



CORRELATION METHODS 297

0 2 4 6 8

−1.0

−0.5

0.0

0.5

1.0

Time (in beats)

V
er

tic
al

 h
an

d 
di

st
an

ce
 fr

om
 c

he
st

 (i
n 

fe
et

)

−8 −4 0 2 4 6 8

−1.0

−0.5

0.0

0.5

1.0

Lag (in beats)

C
ro

ss
co

rr
el

at
io

n

(a) (b)

Fig. 8. An illustration of the problems with global correlations. The movement shown in (a) is
poorly captured by the global autocorrelation (b).

global autocorrelation ceases to be functional. The movements in Figure 8(b)
change over time, as would happen in a real dance scenario. For illustration
purposes, our example shows only a single change in frequency. It is not clear
from the global autocorrelation function exactly what is happening. The slow
decrease in peaks in the global autocorrelation function in Figure 8(b) show
that the dance changes; movements closer together in time are more similar.
There is still an obvious rhythmic movement, but it goes away over time. The
global autocorrelation function aggregates across the entire dance, and so shows
a complicated ‘average’ pattern of temporal symmetry. While this aggregate view
is useful for getting a sense of the overall rhythmicity of the dance, and how well
a set of highly rhythmic movements match each other’s timing, a better method
is needed to see the dance in detail.

In order to examine the changes in symmetry across the course of the dance,
we must look at each part of the dance as its own series of movements. To do
this, we split the dance into short windows of time, and examine the lagged
autocorrelation of each of those windows separately.

While manually examining thousands of windows would be prohibitively
difficult, it is possible to stack a large number of windowed time-lagged autocorrelation

graphs together, as shown in Figure 9. These graphs take some practice to
understand, but reveal numerous patterns in rhythmicity to the trained eye.
Each vertical slice of the graph is a single time-lagged autocorrelation function.
The changing lags are on the y-axis of the graph, again with dotted lines to
indicate a single measure of the musical score. Colour indicates the magnitude
of the correlation – the similarity of the reference window to a window lagged
by that amount. Moving right along the x-axis moves the reference window
forward in time. Rhythmic behavior shows up as horizontal bars, with changes
in the timing of the rhythm showing up as diagonal or vertical changes in those
bars. Figure 9(a) shows the simulated example of a perfect dancer. The result is
perfect horizontal lines, spaced evenly at the timing of the dance; in this case,
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(a) (b)

Fig. 9. Differences visible in Windowed Autocorrelation. Both figures show rhythmic motion
at the beginning, (a) shows a constant repetitive motion, while the motion in (b) changes to a
faster rhythm partway through.

Fig. 10. Windowed autocorrelation of Andrew’s RMS velocity.

the movement repeats every two measures of the music in perfect synchrony.
Figure 9(b) shows a windowed cross-correlation plot of the simulated data shown
in Figure 8(b). Here, the dance begins with a rhythmic motion that takes
two measures to complete, but changes into a motion that repeats with every
measure. These changes are visible on the windowed autocorrelation graph.

Figure 10 shows the previous example of Andrew’s RMS velocity, now in
windowed format. Notice that his movements do not quite fit twice within a
beat – he slightly lags behind the rhythm. Instead, the peak is consistent, but
follows along about a half beat after one half of the length of the repeating
rhythm. This is indicated by the strong peak line just above the y-axis mark
indicating one-half of the rhythmic sequence. The strength of the correlation,
combined with its regularity shows that he is performing a rhythmic motion, but
that it does not repeat precisely with the beat of the music. After about twenty
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Fig. 11. (a) Autocorrelation from Alice’s Dance. (b) Detail of oscillatory behavior. (c) Detail
of vertical feature.

five seconds, the rhythmicity of his movements begins to change drastically – he
no longer shows a regular rhythmic movement.

Alice’s movements from above are shown in Figure 11. More intricacy
in the dance is now visible. Notice the widening and narrowing of the central
band and its contrast with the smaller peak between, as shown in detail in
Figure 11(b). This implies switching between motions that are more constant
near the downbeats (as in our simulated example), and motions that are changing
near the downbeats. Similarly, the long vertical strokes seen in Figure 11(c)
indicate a movement that continues at near-constant velocity over an entire
measure of music. For example, Alice might be performing a spin.

Synchrony can be examined to some extent by simply aligning
autocorrelation plots for comparisons. For example, if we align the
autocorrelation plots of David and Donna as they dance together, we can notice
patterns of synchrony between the two dancers. Peaks that line up horizontally
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Fig. 12. Windowed autocorrelation of a dancer’s RMS velocity.

(that is, have the same location on the vertical axis) imply identical periodicity in
the dancer’s movements; they are repeating their movements at the same rate.
Changes that line up vertically indicate synchronous change; both dancers are
altering their movements at the same time. Aligned autocorrelation plots can
provide insight into the differences in rhythmicity between two dancers, but
it is difficult at times to compare the movements of the two. If both dancers
follow a similar rhythmic pattern, the autocorrelation plots will show similar peak
structures. Visual features of the plots (for example, the vertical bars shown in
Figure 11(c)) can also be coded and used as a measure of comparison. Automatic
coding of these features is also possible.

Windowed Time-lagged Cross-correlation

One drawback of comparing autocorrelation plots, however, is that the plots do
not reflect differences in the phase of movements. If David begins a motion at the
start of a measure, and Donna begins hers two beats later, the autocorrelation
will still show the same rhythmicity. After all, they are still repeating their
movements in the same way. To compare their phases directly, we must look
to a different method.

The same technique used above may be applied to two separate streams of
movement rather than two copies of a single stream, provided the two streams
have the same rate of measurement and span the same amount of time. David
and Donna’s RMS velocities are compared in this way in Figure 12. Again,
moving right on the x-axis moves forward in time. Color again indicates the
degree of correlation, and height along the y-axis indicates the lag between the
two movements. A peak exactly at the lag 0 line indicates that the two are moving
in synchrony. Above the y-axis, a peak indicates that Donna has repeated a
movement made previously by David. Below the y-axis, David has repeated a
motion made by Donna. Stripes parallel to the x-axis but above it imply that
Donna is following David’s movements at a lag determined by the distance to the
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y-axis. Stripes below imply that David is following Donna. Finally, parallel stripes
both above and below indicate that the couple is making rhythmic movements:
Donna making a motion, David repeating it, and then Donna repeating it again.

Of particular interest in a windowed cross-correlation is the location of the
closest peak to the line of zero lag. This indicates the time difference between
the leader and follower in a lead/follow dance. If there is a peak along the zero-
lag line, the two movements are in perfect synchrony. If there is a peak close
to the zero-lag line but not on it, the two movements are in near but not precise
synchrony. Finally, if the peak follows the zero-lag line and then moves off of it or
disappears, synchrony has been formed and then broken. The height of the peak
indicates the strength of coupling; that is, the closer to 1 or −1 the peak is, the
more exactly the follower is imitating the leader, either in translational or mirror
symmetry, respectively. A peak dropping drastically from 1 or disappearing
entirely is an example of a symmetry break] the pattern of leader and follower has
disappeared. Tracking the location and height of the closest peak to the zero-
lag line in a cross-correlation analysis can often be very informative about the
variation in synchrony and symmetry of the dancers’ movements.

DISCUSSION

The techniques shown here are exploratory in nature. They represent a new
way to visualize the overall architecture of a dance, its relationship to the musical
score, and the relationships of dancers to each other. The techniques provide
means of classifying all or part of a dancer’s movement to a specific movement.

Although primarily exploratory in nature, these techniques have previously
been used to examine experimentally the effects of manipulations on unchore-
ographed dance (Boker & Rotondo, 2003). The results, specifically the height
and location of the nearest peak in auto- and cross-correlation plots, can be mod-
eled using standard regression techniques. The height of the correlation should
first be transformed by the Fisher’s Z transformation listed in Equation 14.

The windowed methods here are all naturally dependent on the size of the
window chosen for the analysis. A larger window will provide more smoothing,
reducing the amount of influence that movements with short time durations have
on the correlations. Smaller time windows provide a view of smaller movements,
but allow noise in measurement to become more visible. Larger windows also
reduce the number of windows available for the analysis. In working with
untrained dancers in unconstrained and unchoreographed dance, we have found
windows between one-half and two musical measures to be sufficient. Given the
greater complexity and more intricate planning demonstrated by professional or
choreographed dance, in most cases a larger range is helpful. It is even possible to
extend the lag structure to encompass the entire dance. This larger display would
also make it possible to see long-term relationships such as repeated sequences of
movements or patterns of change between rapid and slow movements. If other
data than movements are used, the window size must be appropriately tuned to
the timescale of the effect under study.
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(a) (b)

Fig. 13. An example comparison of coordination using Windowed Cross-Correlation.
Differences are apparent in structure of coordination of movements in dance (a) as
compared to conversation (b).

Human interaction and movement provide a wide range of characteristic
patterns in the creation and breaking of symmetry. For example, compare
the two windowed, time-lagged cross-correlation plots shown in Figure 13. In
Figure 13(a), two dancers show a relatively continuous synchronized symmetry,
with one dancer leading and the other following, despite regular breaks in
symmetry where one or the other dancer performs a movement separately.
Figure 13(b), a very different pattern of synchronization is apparent, where
symmetry making and symmetry breaking are both apparent. In fact, this pattern
is not from a dyadic dance, but rather from the head movements of participants
in a verbal conversation.

Because the windowed methods are also localized in time, it is possible to
observe, indirectly, the music to which the dancers move. If a large percentage of
independent dancers change their motions twenty seconds into the presentation
of a piece of music, for example, this implies the existence of an event in the
music that precipitates such a change. Early analyses of the data used as an
example in this paper have been used to study the perception of rhythmic
stimuli. The evidence suggests that alternative interpretations of ambiguous
rhythmic stimuli can still have an effect on dancers’ movements (Boker, Covey,
Tiberio, & Deboeck, 2005), even though the dancers do not report hearing those
interpretations. While little other work has been done with these structures in
the field of dance, similar analyses in the field of conversation may provide some
insight into the effectiveness of these techniques. For example, these analyses
have been used to examine the structure of dominance and sex in the lead-
lag relationship of movements (Boker & Rotondo, 2003) or in the structure of
symmetry in velocity at different timescales.

CONCLUSION

Dance can be viewed as a series of movements that create and break symmetry
across both space and time, and that create and break synchronicity among
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themselves, with other dancers, and with the music. The pattern of creation and
breaking of symmetry is one way to characterize a dance. Modern technologies
such as motion capture provide a means of analyzing these patterns of synchrony
and symmetry creation and destruction.

We have presented autocorrelation and cross-correlation techniques for the
visualization of synchronization and symmetry over the course of the dance.
These techniques can be combined with generalized local linear approximation
to detect synchronous behaviours that show symmetry only in their patterns of
velocity and acceleration.

We hope that these tools will allow researchers who study dance to better
codify the ‘rhythmicity’ and ‘regularity’ of dance in terms of symmetry and
synchrony of movements.
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NOTES

1. We use these designations to make it easier to discuss specific dances over the course of the
text. In order to maintain the complete anonymity of participants, no promise is made that
the dances referred to as a single person’s are performed by a participant of the assumed
gender of the example, or even all by a single participant. Gendered names are used to help
differentiate the dancers in the surrounding text, and to ease memory in the case of the
lead/follow relationship in the dyad. Not all the cases shown are necessarily led by the male
partner.

2. The last row and column on the orientation matrix are generally each [0, 0, 0,1]. They and
the final 1 on the coordinate vector provide a representation of position and orientation in
homogenous coordinates. The homogeneous coordinate representations are used so that position
and orientation can be combined into a single matrix, and transformations easily applied.

3. While an autocorrelation stream will always be symmetric about a lag of zero, we include
the negative lags here for instructional purposes. When we generalize to cross-correlation,
this symmetry will no longer always hold.


