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ABSTRACT

Small digital video cameras have become increasingly common,
appearing on portable consumer devices such as cellular phones.
The widespread use of video-conferencing, however, is limited in
part by the lack of bandwidth available on such devices. Also, video-
conferencing can produce feelings of discomfort in conversants due
to a lack of co-presence. Current techniques to increase co-presence
are not practical in the consumer market due to the costly and elab-
orate equipment required (such as stereoscopic displays and multi-
camera arrays).

To address these issues, this paper describes a real-time, full
frame-rate video-conferencing system that provides simulated three-
dimensionality via motion parallax in order to achieve a higher level
of co-presence. The system uses a deformable 3D face model to
track and re-synthesize each user’s face using only a single monocu-
lar camera, so that only the (few tens of) parameters of the model
need be transferred for each frame. This both provides motion-
tracking for the simulated 3D experience and reduces the bandwidth
requirements of the video-conference to the order of a few hundred
bytes per frame.

Bandwidth and processor usage for the algorithms are reported.
Possible implications and applications of this technology are also
discussed.

1. INTRODUCTION

As small digital video cameras have become less costly and more
ubiquitous, showing up on consumer products such as laptops, PDAs,
and cellular phones, video-conferencing has seen increasingly wide-
spread usage. In order to gain widespread acceptance, video-con-
ferencing faces two major difficulties. First, full frame-rate trans-
missions have heavy bandwidth requirements, and average users are
often constrained to low frame-rates and poor quality transmission,
even with the use of video compression algorithms. Second, basic
video-conferencing lacks a feeling of common presence and shared
space, fundamentally changing the dynamics of conversation and
potentially causing the users to feel uncomfortable [5].

This material is based upon work supported in part by NSF Grant BCS–
0527485. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

More advanced video-conferencing systems create a sense of co-
presence by inducing the perception of three-dimensionality. This
can be accomplished using binocular disparity technologies such as
stereoscopic displays or augmented reality systems. An alternate ap-
proach, motion parallax, approximates a three-dimensional experi-
ence by rotating a 3D model of the object based on the user’s viewing
angle. This has been reported to provide a greater feeling of co-pres-
ence than the binocular approach [1], but current implementations
require the use of expensive motion-tracking technologies such as
multi-camera, optical tracking arrays [3]. Regardless of the ultimate
display technology, whether binocular or motion-based, imaging the
object to be displayed requires at least a two-camera system.

This paper describes a real-time, full frame-rate (30+ fps) video-
conferencing system that provides an experience of co-presence with-
out the need for expensive displays, multi-camera arrays, or elabo-
rate motion-capture equipment. This system is capable of using a
single, commodity camera and an Active Appearance Model—a sta-
tistical model of the face—to capture and display near-photorealistic
video of each user’s face, while simultaneously tracking each user’s
movement. The system’s representation of each user’s appearance
results in extremely low bandwidth usage. Tracking allows the use
of motion parallax to create a three-dimensional experience.

2. ACTIVE APPEARANCE MODELS

An Active Appearance Model (AAM) is a generative, parametric
model that encapsulates a compact statistical representation of the
shape and the appearance of an object [2]. AAMs are most com-
monly used to track [4] and synthesize [6] faces in images and video
sequences, where the compact nature of the model allows faces to be
tracked, manipulated and rendered all at video frame-rate and during
live face-to-face conversation over a video link [9].

The shape component of an AAM is represented by n two-
dimensional (2D) vertices, s0 = (x1, y1, . . . , xn, yn)T , connected
to form a triangulated mesh, and a set of basis shapes, si, that define
the allowed variation in the shape. Any particular instance of a shape
is generated from a linear combination of basis shapes added to s0:

s = s0 +

mX
i=1

sipi, (1)

where the coefficients pi are the shape parameters that represent the
shape s. The shape component of an AAM is typically computed
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by applying principal components analysis (PCA) to a set of shapes
hand-labeled in a set of images. In this instance s0 is the mean shape
and the vectors si are the (reshaped) eigenvectors corresponding to
the m largest eigenvalues. The vertices that define the structure of
the shape are typically chosen to delineate the facial features (eyes,
eyebrows, nose, mouth, and face outline). To ensure the model is
sufficiently generative, i.e. all facial expressions of interest can be
represented as some combination of the basis vectors, the hand-
labeled images must contain a suitably diverse collection of facial
expressions.

The appearance component of an AAM is defined as an image,
A0(x) formed of the pixels x = (x, y)T ∈ s0, and a set of basis
images, Ai(x), that define the allowed variation in the appearance.
The appearance component of an AAM is computed by first shape
normalizing the images by warping from the hand-labeled vertices
to s0, then applying PCA to the resultant image set. Again, A0(x)
is the mean image and Ai(x) are the (reshaped) eigenvectors corre-
sponding to the l largest eigenvalues. As with the shape, any particu-
lar shape-normalized image is generated using a linear combination
of the basis images added to A0(x):

A0(x) = A0(x) +

lX
i=1

λiAi(x) ∀ x ∈ s0, (2)

where the coefficients λi are the appearance parameters. See the
bottom row of Figure 1 for an example of an appearance component
of an AAM.

To render a near-photorealistic image of a face from a set of
AAM parameters, first the shape parameters, p = (p1, . . . , pm)T,
are used to generate the shape, s, of the AAM using Eq. (1). Next
the appearance parameters λ = (λ1, . . . , λl)

T are used to generate
the AAM appearance image, A(x), using Eq. (2). Finally A(x) is
warped from s0 to the generated shape s.

To label an existing image automatically with an existing AAM,
an analysis-by-synthesis approach is used. First, an initial estimate
(e.g. the parameters representing the previous frame) of the parame-
ters that represent the shape and appearance in the image of interest
is generated. Next an image is synthesized by applying the parame-
ters to the model, and finally a gradient-descent error minimization
is used update the parameters to minimize the residual between the
image being fitted to and the model-synthesized image. There are a
wealth of algorithms proposed for performing this minimization [4].
The trade-off is typically speed versus accuracy.

Fig. 1. The shape (top) and appearance (bottom) components
of an AAM. For each row the left column illustrates the mean
shape/appearance, and the center and right columns the first two
modes of variation of the shape/appearance components.

2.1. Multi-segment models

The standard approach to constructing the appearance component of
the AAM is to warp the images onto s0 and concatenate all pixels
bound by the mesh before applying PCA. The assumption is that the
probability distribution of the pixel intensities is Gaussian. How-
ever, this is generally not the case when considering faces and con-
sequently some important information is considered noise and dis-
carded, which results in blurring in the rendered images. This is
most striking in the eyes and inner mouth which tend to be the more
important areas of the face. An extension to improve the quality of
rendering is to construct a piece-wise PCA by building independent
appearance models for the different regions of the face (skin, eyes,
inner-mouth). This can be done in the coordinate frame of s0, so
the pixel indices for the different regions of the face are constant
across all images. The appearance for the individual segments can
then be regenerated and copied into the appearance vector A(x) be-
fore warping to the shape s. This allows different model segments
to be encoded with more/less resolution, allocating more resources
to regions of the face on which a viewer’s attention is likely to be
focused, such as the eyes and mouth.

3. MOTION PARALLAX

Motion parallax is a visual effect by which humans gauge the dis-
tance to objects [5]. It is caused by the apparent rotation of an object
as the viewer moves around that object. That is, as the viewer moves
to her right, she is able to see more of the left side of the object.

Apparent motion parallax is achieved by estimating the user’s
viewing angle with respect to the screen, and rotating the generated
view appropriately. We assume for the purposes of this paper that
the user should see an unrotated view of the co-conversant when the
user’s face is centered at (0, 0). In most cases, the apparent hor-
izontal and vertical viewing angles (θ and φ, respectively) can be
calculated from the overall displacement of the face along the hor-
izontal and vertical axes (x and y, respectively), and the estimated
distance from the camera d.

θ = arcsin
x

d
φ = arcsin

y

d

While the distance d to the camera can be precisely calculated if
the actual size of the user’s face and the focal length of the camera
are known, we have found it more expedient to simply provide the
user with a tool to adjust the distance manually, requesting that they
adjust it until the parallax effect is achieved.

4. SYSTEM ARCHITECTURE

The system presented consists of two computers with commodity
digital video cameras and standard displays connected by a network.
As each frame of video captured by a camera is processed by the
local computer, the system fits the user’s AAM to that frame and
extracts the appropriate model parameters to capture the image and
location of the local user’s face. The model parameters are then sent
across the network to the remote machine, which then reconstructs
the image of the local user’s face. The camera-relative location of
the local user’s face is then used to perform the appropriate rotations
to achieve motion parallax three-dimensionality. In this way, the sys-
tem can provide head tracking for three-dimensional display, while
encoding the image of the user’s face as a small number of param-
eters for low-bandwidth transfer. The overall system architecture is
shown in Figure 2.
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Fig. 2. This diagram displays the system architecture. After fitting
the local user’s AAM to a frame of video, model parameters are sent
across the network to the remote user’s computer, where they are
used to reconstruct the image of the local user.

Fig. 3. An example of a reconstructed facial image, as it is shown to
the remote user.

It is important to note that each computer must have access to
pre-constructed AAMs of both the local and remote user. While it is
possible to construct multi-person models, in general each model is
tailored to a single individual. Full models are large (between 5 and
15 MB, depending on the resolution of the model images and the
complexity of the model) but need only be shared once. The bulk of
the shared model size is due to the appearance eigenvectors, each of
which is a mapping from a parameter to each pixel, essentially a full-
resolution image in itself. The size of the models can therefore be
reduced by subsampling the mean image and the appearance eigen-
vectors to reduce the number of pixels represented by the appearance
model. A full-face example model, shown in Figure 3, requires just
over 13 MB to perform full-quality reconstruction. As seen in Fig-
ure 4, however, it is quite possible to construct a reasonable image
after transmitting less than a single megabyte. Although the resolu-
tion of each reconstructed image would be quite low, it might be suf-
ficient for display on, for example, a two-inch-wide cellular phone
screen. A multi-segment model could be used to ensure that there
is sufficient resolution in the parts of the face that are deemed more
important, for example the eyes and mouth.

It would also be possible to send a small but working model be-
fore the conversation begins (taking a few tens of seconds to send)
and to send improvements to the model as bandwidth allows during
the conversation. The addition of a multi-segment model would al-
low the most important segments to be updated first, while details
such as skin texture might follow later.

Because the downsampled model will still use the same parame-
ters as the full-pixel model, it is even possible to reconstruct a higher-
resolution image from a lower-resolution camera, provided the orig-

Fig. 4. These images were the result of downsampling the model; in
order from top-left to bottom-right, the model generating each image
is of size 3 MB, 1.6 MB, 925 KB, and 400 KB. The fully rendered
image, shown in Figure 3, uses a model of size 13 MB.

inal model was built at the higher resolution. While the individual
pixels of this higher-resolution model are not guaranteed to be ac-
curate, the resulting images should still appear to be high-resolution
images of the co-conversant and the model will ensure that the re-
sulting face is always valid, in the sense that it will be similar to the
images originally labelled for the model.

5. RESULTS

While the exact network performance of the system depends on the
fidelity of the model and the exact choice of labelled frames, fully
labelled models generally require about thirty parameters (fifteen for
shape and fifteen for appearance) for video-realistic reproduction. If
each parameter is transmitted at floating-point precision, a thirty-
parameter model results in 240 bytes of data transmitted between
the machines per full frame. At these speeds, a 30 fps video stream
requires a total (two-way) transfer of 7200 Bytes per second, i.e.,
57.6Kbps. This number reflects raw parameter values, and could al-
most certainly be reduced further by keyframing or other forms of
compression. Theobald, et. al. [7] were able to reduce the transmis-
sion size to 3.6 Kbps with minimal perceptual impact.

Two fully labelled pre-shared models were used for performance
evaluation. A shape model including the forehead, eyes, eyebrows,
nose, outer and inner mouth, and chin was designed and built. Each
model extracted roughly 95% of facial variance within the chosen
region and the resulting real-time rendering of the face was near-
photo-realistic, as shown in Figure 3. In an experiment using same-
quality facial renderings, none of the 28 participants guessed that the
reconstructed video was not a cropped live video stream[8]. A video
demonstrating the system can be downloaded from:
http://people.virginia.edu/˜trb6e/wiamis09/
demo.mov

One side of the system ran on a Macbook Pro with a Dual-core
2.5 GHz Xeon processor, 4 GB of RAM, and a built-in iSight web
camera. The other side ran on a Mac Pro with Dual Quad-core 3.8
GHz Xeon processors, 8GB of RAM, and an external iSight cam-
era. To perform fitting, transfer and reproduction, the Macbook Pro
required on average 33.2% of the processing power of a single core
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at any given time, and maintained a maximum memory usage of 75
megabytes of memory. Because the amount of memory usage and
processing power scale down with the number of pixels in the fit and
reconstructed models, each model could easily be downsampled to
match the video and processing capabilities of the receiving device.

6. DISCUSSION AND FUTURE WORK

As a result of the statistical representation provided by the AAMs,
the bandwidth consumed by this system is meager by today’s stan-
dards. Because the system requires only a single camera per user,
it could be incorporated into low-bandwidth consumer devices, such
as laptops, cell phones, and PDAs, many of which are already man-
ufactured with a single digital camera.

Tracking the location of the local user’s face with the AAM and
displaying an image of the remote user’s face rotated appropriately
provides apparent three-dimensionality via motion parallax for in-
creased co-presence. It is expected that this increase in co-presence
will be associated with a more comfortable interactive experience. A
user study to test this hypothesis empirically is currently in progress.

Because the display of each user is reconstructed from a digi-
tal model, it is possible to perform manipulations on the transmitted
video by altering the model. For example, Theobald, et. al. [9]
have mapped the appearance of one face onto the motions of a sec-
ond person by manipulating the AAM. This manipulation allows the
generation of near-photo-realistic, real-time video where the user’s
perceived identity, including gender, have been changed. Other pos-
sibilities for manipulation include expression and the dynamics of
conversations. This provides numerous possibilities for research in
the social sciences, as well as media applications, such as anima-
tion and online games. For example, an online game could capture
the expression of a player, transmit it to a central server using negli-
gible bandwidth, and map that expression to the face of the player’s
character for display to other players. The possibility of undetectable
manipulation also raises questions of trust in video-conferencing, but
these issues are beyond the scope of this paper.

The primary limitation of the system is related to the creation
of the models. Hand-labeling facial images for an accurate, robust
AAM takes approximately two hours, though it need only be done
once. This labeling, if done incorrectly, can add error-variance to the
models, resulting in poor fit and unrealistic synthesized video. Mod-
els are also susceptible to poor fitting in lighting conditions drasti-
cally different from the lighting in the original environment. Further
work is therefore needed to better automate this process and reduce
the amount of hand-labeling needed by the model.

Some work is already in progress on robust generic statistical
models, such as CLMs [10]. While these models are not yet vi-
able for real-time tracking and redisplay, they may in the future be
easy ways to automatically label, or possibly even replace, the use
of AAMs for video-conferencing. Because these models differ only
in the way that the fit of the model is achieved, the present system
would still be able to interface with them normally.

Even with the current implementation that requires labeling time
to create models, it seems likely that users would be willing to de-
vote such time in order to be able to perform high-presence video-
conferencing on their mobile devices. The online gaming and chat
communities have already demonstrated their willingness to spend
long hours tuning avatars to precise specifications, and it seems likely
that they would similarly be willing to spend the time required to la-
bel images for an accurate AAM.

As previously mentioned, the size of a complete AAM model
file (5-15 megabytes) makes it difficult to share. For those devices

such as cellular phones with tight bandwidth restrictions or low pro-
cessing power, lower resolution models could easily be shared at the
beginning of the conversation. To optimize this transfer, devices in-
tending to engage in video-conference might first send specifications
about display and camera resolution and bandwidth so that each side
could quickly downsample the appearance components of a high-
quality model for transmission. Again, multi-segment models could
ensure that important areas of the face are rendered at higher resolu-
tion than less important areas.

Alternately, a model could “trickle” down to the user over a long
period of time before the video-conference. For example, a model
could be transmitted to a user’s cell phone once the co-conversant’s
contact information was entered. For any video-conference planned
in advance, appropriate models with could be easily shared this way.

7. CONCLUSIONS

This paper demonstrates a real-time, full frame-rate, low-bandwidth
video-conferencing system that provides an experience of co-pres-
ence via motion parallax using a single commodity camera. It is
believed that this system may increase the acceptance and usage of
video-conferencing technologies as communications tools by bring-
ing these qualities to consumer devices.
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