
OpenMx 1

Running head: OPENMX

OpenMx: An Open Source Extended Structural Equation Modeling Framework

Steven Boker1 Michael Neale2 Hermine Maes2 Michael Wilde3

Michael Spiegel1 Timothy Brick1 Jeffrey Spies1 Ryne Estabrook1

Sarah Kenny3 Timothy Bates4 Paras Mehta5 John Fox6

(1) University of Virginia; (2) Virginia Commonwealth University;

(3) University of Chicago, Argonne National Labs;

(4) University of Edinburgh; (5) University of Houston; (6) McMaster University;

Draft April 16, 2010

Please do not cite or quote

OpenMx 2

Abstract

OpenMx is free, full–featured, open source, structural equation modeling (SEM) software.

OpenMx runs within the R statistical programming environment on Windows, Mac

OS–X, and Linux computers. The rationale for developing OpenMx is discussed along

with the philosophy behind the user interface. The OpenMx data structures are

introduced — these novel structures define the user interface framework and provide new

opportunities for model specification. Two short example scripts for the specification and

fitting of a confirmatory factor model are next presented. We end with an abbreviated list

of modeling applications available in OpenMx 1.0 and a discussion of directions for future

development.

OpenMx 3

OpenMx: An Open Source Extended Structural Equation

Modeling Framework

Structural Equation Modeling: Context and Motivation

Structural equation modeling has a long history dating back to the development of

path analysis by Sewall Wright (Wright, 1921). Path analysis is an algorithmic tool for

deriving a set of predicted covariances between variables which may be connected with

either regression (asymmetric, directional) or correlation (symmetric, non-directional)

paths. The advent of high speed computers and high level programming languages in the

1960’s, together with advances in statistical methodology (Jöreskog, 1967) led to the

development of software for fitting models to observed covariance matrices by maximum

likelihood. This procedure is now commonly known as structural equation modeling

(SEM). Several extensions of this methodology have increased its scope: modeling of

means as well as covariances (Sörbom, 1974); specifying certain paths as observed

variables (known as definition variables in Mx) (Neale, 1998; Neale, Boker, Xie, & Maes,

2006)); and fitting finite mixture distributions (Eaves, Neale, & Maes, 1996; Everitt &

Hand, 1981; McLachlan & Peel, 2000).

A search of the PsycInfo database for “latent variable” or “latent class” or

“structural equation model” gives an estimate of the increasing popularity of SEM: 1970’s,

23; 1980’s, 357; 1990’s, 2,794; and 2000-2009, 9,599. These searches underestimate the

actual number of published articles that used this method, as many abstracts do not

provide detail about the statistical methods used. At the same time, the great variety of

statistical methods that are subsumed by SEM including analysis of variance, multiple

regression, discriminant analysis, canonical and partial correlations, factor analysis,

principal components analysis and multilevel analysis, (Marcoulides & Schumacker, 1996;

OpenMx 4

McArdle & Hamagami, 1996; Longford & Muthèn, 1992) further demonstrate its broad

utility.

The increased popularity of SEM has been accompanied by two changes in the

statistical analysis of research data. First is that the complexity of the models and

methods being used has increased dramatically. In statistical modeling, problems that

were previously regarded as impossibly complex have become regarded as tractable. This

trend is partly driven by Moore’s Law, which states that the complexity of computer

circuits (i.e., computing power) doubles approximately every 18-24 months (Moore, 1965).

Both methodological and substantive researchers have sought to exploit developments in

computer architecture with statistical methods to improve the quality of their scientific

output.

The second change is that as data collection methods have become more automated

and data storage has become inexpensive, datasets have dramatically increased in size. As

a result, research projects have become more ambitious, collecting many measurements

from large samples of subjects. SEM, which has made possible a range of complex

analyses, has the potential to be an extremely valuable approach to these new challenges

due to i) greater statistical power (less variance in study outcomes), and ii) greater

precision (less bias in the results).

There is a wide variety of software that allows the estimation of SEM models.

Examples include Amos (Arbuckle, 1997), Calis (PROC CALIS , 2009), EQS (Bentler,

1995), LISREL (Jöreskog & Sörbom, 1996), Mplus (Muthén, 1998), Mx (Neale et al.,

2006), RAMONA (Browne & Mels, 1998), sem (Fox, 2009), and SEPath (SEPath, 2009).

Given this crowded field of SEM software, it is perhaps surprising that there might be

room for a new SEM package. The present article announces the availability of new SEM

software that is substantially different from that currently available. We believe that

OpenMx fills an open evolutionary niche in the extant SEM software ecology.

OpenMx 5

Why a New SEM Package?

OpenMx is a free, open source, full–featured SEM package that runs inside the R

statistical programming environment (Ihaka & Gentleman, 1996). Although the

programming team includes authors of the original Mx software, OpenMx has been

rewritten from scratch using modern languages and programming techniques. Model

specification has been redesigned to be much more flexible and general than that used by

traditional SEM software.

Open Source

OpenMx is open source; thus the source code is available for everyone to view,

modify, and use. We currently have a team of dedicated programmers and a design team

determining the direction of OpenMx. The project itself is organized somewhat like a

scientific journal: Code can be submitted for review by the “editorial board” who read,

edit, and test the code. Code that is accepted for publication as part of the OpenMx

package becomes available for the entire scientific community. We do not place any limits

on how readers and users of the code may use the software and code, but we do expect

that code that is part of OpenMx is cited by people who use it. Authors who contribute

code are cited by the project and by others who use their code.

In order to help organize an open source community, the OpenMx project maintains

a web site (http://openmx.psyc.virginia.edu) that hosts binary and source versions of

the software and several forms of tutorials and reference documentation. On the web site,

a set of open–access forums have been established to allow the SEM community a place to

discuss SEM models, theory, and methodology. In addition, help on OpenMx is available

on the web site from discussion forums and a community–maintained Wiki. Finally, a set

of developer forums is also hosted in order to allow statistical programmers a place to

communicate about new ideas and patches that may become part of the base OpenMx

OpenMx 6

project.

Sustainability

OpenMx has been written using modular programming techniques in the C and R

languages with the intent that it will be maintained and extended by members of the

research community. Modular programming design means that the code is written so that

each section of code operates independently and is accessed via a well–defined interface.

This means that many programmers can be working on the code simultaneously as long as

each module of code maintains the expected behavior from its interface. In order to work

on part of OpenMx, one does not need to understand the inner workings of all other

modules; it is only necessary to understand and adhere to the interface specifics for that

specific module.

The core programming team is working hard to encourage and help statistical and

quantitative researchers to add their research projects to the larger OpenMx SEM

framework. For instance, someone who is working on a particular type of estimation, a

particular type of model, or perhaps a new fit statistic can incorporate his or her research

into a project that is immediately available to a large community of users. One does not

need to write model specification methods, input/output methods, data handling

methods, and all the other parts required before substantive researchers can use the novel

software. We expect that the user interface, estimation methods, and reporting functions

for OpenMx will evolve quickly due to the influx of new ideas and code contributed by the

large community of SEM users.

Rethinking Model Specification and Estimation

SEM models are becoming more difficult to specify and estimate as substantive

theory and data grow increasingly complex. Massive data sets including genome–wide

association and brain imaging are at the leading edge of this evolving research landscape.

OpenMx 7

These data sets are many orders of magnitude larger than those available when most SEM

software was originally designed and programmed. For instance, an fMRI data set might

include 40,000 voxels per frame per person. An SEM model of these data might include

hundreds of latent variables and tens of thousands of free parameters. In such a case, one

would need a large parallel computing grid to estimate the model. OpenMx has been

designed from the beginning with parallel computing in mind, both for use with multicore

computers and with very large grids of computers such as the TeraGrid and Open Science

Grid.

Heterogeneous Computing Environments

OpenMx runs on a variety of operating systems including Microsoft Windows, Mac

OS-X, and most popular variants of Linux. OpenMx scripts that are written within one

operating system can be used on other operating systems without modification. This

platform–independence is useful in today’s heterogeneous computing environments where

each researcher on a team may have a different preferred computing platform. In addition,

this multi–platform support means that heterogeneous grids of computers can be used to

run OpenMx, a common occurrence in parallel distributed computing environments.

A New Approach to Model Specification

Two methods are currently in use for specifying SEM models in scripts. The first

centers around specifying the matrices that define the covariance and mean structure of

the manifest and latent variables. The second method is based on path analysis and uses a

compact specification for the paths and variables in a path diagram. In the end, both of

these methods produce a set of matrix equations that are used as an objective function

(sometimes called a cost function) that is optimized in order to find parameters such that

the objective function is at a minimum. Popular objective functions include maximum

likelihood and several variants of least squares.

OpenMx 8

OpenMx implements both matrix–centric and path–centric methods for specifying

the desired structure of the model. Thus, one can use either of these two methods or even

a combination of the two. We will provide a short example of these two methods later in

the article. In addition to builtin objective functions such as FIML, OpenMx provided

method for the user to specify their own custom objective functions.

The data structures that are produced when one creates an OpenMx SEM model

are a departure from the structures produced by other SEM software. We will next

describe these structures and how they fit together. While software has improved, SEM

modelers continue to think about their model structure in ways that have changed very

little since the 1960s. One may use OpenMx without changing one’s conception of model

building, continuing to use path specifications or matrix specifications in a serially ordered

script. However, the fact that R is interactive, has powerful vector and matrix operations,

and incorporates the flow control of a full programming language all act to allow one to

rethink the way models are specified. The OpenMx data structures are designed to

flexibly accommodate the power of R. The authors hope that these factors will be

sufficient to trigger a paradigm shift in the way SEM is conceived and taught.

This section begins with a description of three of the basic structures in OpenMx:

MxModel, MxMatrix, and MxAlgebra. We describe how MxModels may contain other

MxModels in a tree–like hierarchy, and how references are made within an MxModel

hierarchy. We then briefly discuss how data and objective functions are specified within

an MxModel. Finally, we provide two example specifications of a simple confirmatory

factor model.

MxModels and the Objects They Contain

Data structures in OpenMx are implemented as objects, specifically R S4 objects.

The MxModel is the object that contains all of what is necessary in order to specify a

OpenMx 9

structural model. It is primarily a container for other objects while providing the

organization that allows the contained objects to refer to one another (see Figure 1). Each

MxModel has three slots for metainformation about the model: an internal reference

name, a type, and a flag that indicates whether the model can be estimated independently

from other models.

MxModels define a namespace, in other words, a self–contained set of strings that

define either (1) objects or (2) elements in matrices. Each of these names is unique within

the namespace. Therefore, if a name occurs more than once during the specification of an

MxModel, it is taken to mean that the name is referring to the same thing. This turns out

to be very powerful. For instance, if you name two matrix elements “b” then these two

elements are constrained to be equal.

An MxModel may contain: lists of MxMatrices, MxAlgebras, MxConstraints, no

more than one MxData object, and an objective function. There are also slots in the

MxModel that contain a list of optimization options and a list that contains output from

the most recent optimization run. We note here that MxModels can also contain a list of

other MxModels. This allows one to create a hierarchical tree of MxModels which is

subsumed within a root MxModel container. A hierarchical tree of child and parent

MxModels provides a new way of thinking about constructing SEM models that is

surprisingly powerful.

An MxMatrix is an object which contains five separate R matrices and five

metainformation slots: a type, the number of rows and columns; the labels for each row

and column (in R this is called dimnames); and the name by which the matrix is known in

its MxModel namespace. The five matrices in the MxMatrix are all of the same order, but

of different R storage types. The values matrix holds the starting (or estimated) values

and is of type double. The labels matrix is of type character and holds the name of

each element of the matrix. Matrix elements that have the same name are constrained to

OpenMx 10

be equal to one another. The free matrix is of type logical and if an element is TRUE,

then that element is considered to be a free parameter during estimation. The lbound and

ubound matrices are of type double and contain lower and upper bounds for the free

parameters.

An MxAlgebra is an object that contains its name, a formula in R notation, and a

result matrix of type double. The operands in the formula are named objects in the

MxModel namespace that are either an MxMatrix or an MxAlgebra. Matrix operators

include most of the common matrix operations such as addition, subtraction, matrix

multiplication, dot product, Kronecker product, inverse, transpose, augmentation,

exponentiation, log, and many others. A full list of operators can be found on the

OpenMx website wiki.

An MxConstraint contains two objects, either of which can be an MxMatrix or

MxAlgebra, and a relation between them, which can be one of >, <, or ==. This allows

the specification of nonlinear constraints which should be satisfied at the end of

optimization.

Objective Functions and Data

One of the most flexible parts of OpenMx is the way that the objective functions

can be defined. An objective function for optimization results in a scalar number that is

minimized. Examples of predefined objective functions include maximum likelihood

(mxMLObjective) and full information maximum likelihood (mxFIMLObjective).

However, other objective functions can be specified using the mxAlgebraObjective which

allows one to specify a formula in the same way as an MxAlgebra is specified with the

caveat that the result of the formula must be a 1× 1 matrix. This allows the possibility of

creating objective functions that perform specific optimizations such as variants of least

squares or even various Bayesian optimizations.

OpenMx 11

The MxData object contains the data used for optimization. The data object may

be raw data, a correlation matrix, a covariance matrix, a covariance matrix and vector of

means, or a sums of squares and crossproducts matrix. Each column in the raw data or

covariance matrix must have a column name. If the data is an R dataframe or covariance

matrix calculated from a dataframe, these column names are automatically supplied, but

these column names must be defined via dimnames for data supplied from other sources.

Named columns in MxMatrices that match the dimnames in the MxData are

automatically mapped to the correct column in the data.

MxModel Trees

One of the novel features of OpenMx is that models can contain other models as

shown in Figure 3. This allows one to think very naturally about how dependency is

structured in an SEM context. For instance, a model hierarchy can be built that expresses

dependency in a genetic SEM analysis: An ACE model is built that contains matrices

common to all groups and then two submodels are constructed, one for the monozygotic

twin pairs and one for the dizygotic twin pairs. This approach partitions the problem into

submodels that follow the logical group structure in the data. A Mixture distribution

analysis can be set up as a model tree where the submodels are the elements of the mixture

and the top level model expresses the overall likelihood calculation for the mixture.

Multiple independent models can be grouped together as submodels into a single

run for problems such as bootstrapping or simulations where the top level model can fit an

overall model on the estimation results returned from the independent models. In a case

of independent models, OpenMx uses the facilities of snow and swift to distribute the job

over multiple CPUs The limit to how many models can be structured into a hierarchy is

the memory limit of your computer. We have run cases with tens of thousands of

submodels.

OpenMx 12

A model hierarchy structure allows one to express the logic of an analysis in a

straightforward and simplified manner. This feature of OpenMx is a departure from

traditional SEM specification, and has proven popular among beta testers of OpenMx.

References within MxModels and MxModel Trees

The namespace for an MxModel includes all of the non–independent models in a

hierarchical tree. Thus, for instance, parameters can be constrained between two

submodels as shown in Figure 4. Constraints cannot be made to elements in an

independent submodel — one of the conditions that allows independent estimation of

branches of a model tree that have been marked as independent. In Figure 4 four elements

from three matrices across two submodels have all been constrained to be equal by

labeling the corresponding elements as “d”.

Free elements of MxMatrices can also be constrained to be equal to the results of

MxAlgebras by using labels that include the MxAlgebra name and an index into the result

matrix of the MxAlgebra as shown in Figure 5. This allows matrix elements to be

constrained to be nonlinear functions of free parameters for use in, e.g., logistic regression

or continuous time differential equations models.

Example Scripts

In order to give an introduction to how OpenMx scripts are written, we present a

confirmatory two factor model with simple structure as shown in Figure 6. The model will

be specified using two methods.

Path Analysis Method

First, we will use the path analysis method to specify the model. In this approach,

we first define the variables and then specify the regression, variance, and covariance

paths. While this method is verbose, it is designed to expose all of the parts of the model.

OpenMx 13

Hiding functionality behind defaults allows a script to be shorter to type, but it can mean

that it is difficult to understand exactly what the model does (the “Black Box” problem).

By making all parts of the model specification explicit, we expose all of the model to

inspection. We have found that this philosophy results in scripts that are easier for i)

students to learn and ii) others to understand.

load the OpenMx package into R

library(OpenMx)

read the data into an R dataframe

factorData <- read.csv("demoTwoFactor.csv")

define which indicators load on each factor

indicatorsF1 <- c("x1", "x2", "x3", "x4", "x5")

indicatorsF2 <- c("y1", "y2", "y3", "y4", "y5")

create a vector of all of the manifest variables

manifests <- c(indicatorsF1, indicatorsF2)

define which indicator is to be used to scale each factor

scaleF1 <- c("x1")

scaleF2 <- c("y1")

define the names of the factors

latents <- c("F1", "F2")

define the MxModel and store it into "factorModel"

factorModel <- mxModel("Simple Structure Two Factor",

type="RAM",

manifestVars = manifests,

latentVars = latents,

specify the free factor loadings

mxPath(from="F1", to=indicatorsF1, free=TRUE, values=.2),

OpenMx 14

mxPath(from="F2", to=indicatorsF2, free=TRUE, values=.2),

scale the two latent variables

mxPath(from="F1", to=scaleF1, free=FALSE, values=1),

mxPath(from="F2", to=scaleF2, free=FALSE, values=1),

specify the unique variances

mxPath(from=manifests, arrows=2, free=TRUE, values=.8),

specify the factor variances

mxPath(from=latents, arrows=2, free=TRUE, values=.8),

specify the factor covariance

mxPath(from="F1", to="F2", arrows=2, free=TRUE, values=.3),

specify the mean structure

mxPath(from="one", to=c(manifests, latents), arrows=1, free=FALSE, values=0),

attach the data to the model

mxData(factorData, type="raw")

)

run the factor model

factorModelOut <- mxRun(factorModel)

print a summary of the results

summary(factorModelOut)

Note that we find it convenient to first set up vectors of character strings that define

which indicators are used with which factors and which indicators are used to scale the

factors by fixing their values to 1.0. This allows us to use shorthand to create many

loading paths at once in the mxPath statements — whenever there is a vector of “from

variables” or “to variables”, the mxPath function creates all of the connections at once.

OpenMx 15

Matrix Method

While the path analysis method may be preferred for some models, it is often either

easier or is necessary to use matrices to specify a model. Many of the advanced models

available in OpenMx have no equivalent path diagram and so their covariance algebra

must be specified via matrices. In addition, matrix specification is frequently more

compact than specifying all of the paths.

We will respecify the model in Figure 6 as a product of matrices. This model is of

factor analytic form and so the expected covariance matrix of the indicators, R, can be

written as

R = ALA′ + U, (1)

where A is the matrix of factor loadings, L is the factor intercorrelation matrix, and U is

the diagonal matrix of unique factor variances. This model can be written in OpenMx

using the following script.

load the OpenMx package into R

library(OpenMx)

read the data into an R dataframe

factorData <- read.csv("demoTwoFactor.csv")

read the names of the indicator variables from the dataframe

indicators <- names(factorData)

define the MxModel and store it into "factorModel"

factorModel <- mxModel("One Factor",

specify the loading matrix including its starting values and which elements are free

mxMatrix("Full", nrow=10, ncol=2,

values=c(1,rep(0.2,4),rep(0,10),1,rep(0.2,4)),

free=c(FALSE,rep(TRUE,4),rep(FALSE,10),FALSE,rep(TRUE,4)),

OpenMx 16

name="A"),

specify the factor intercorrelation matrix

mxMatrix("Symm", nrow=2, ncol=2, values=.8, free=T, name="L"),

specify the matrix of unique factor variances

mxMatrix("Diag", nrow=10, ncol=10, values=1, free=T, name="U"),

specify the algebra that results in the model expectations

mxAlgebra(A %*% L %*% t(A) + U,

dimnames = list(indicators, indicators),

name="R"

),

specify a model for the means fixed at zero

mxMatrix("Full", nrow=1, ncol=10,

values=0, free=FALSE,

dimnames=list(NULL, indicators),

name="M"

),

choose the full information maximum likelihood objective function

mxFIMLObjective(covariance="R", means="M"),

attach the data to the model

mxData(factorData, type="raw")

)

run the factor model

factorModelOut <- mxRun(factorModel)

print a summary of the results

summary(factorModelOut)

The trickiest part of this version of the script is the way that the loading matrix, A,

OpenMx 17

is specified. Note that R stores values into matrices column–wise unless byrow=TRUE is

selected. So, the matrix A ends up as a 10× 2 matrix with starting values

A =



1.0 0

0.2 0

0.2 0

0.2 0

0.2 0

0 1.0

0 0.2

0 0.2

0 0.2

0 0.2



(2)

If you look carefully in the script above at the values= line in the specification of the

matrix A, you can see how the values from vector are stored into the A matrix. A similar

method is used to specify which loadings are fixed and which are to be estimated in the

matrix A. All elements with starting values of 0.2 end up designated as free=TRUE

whereas all others are designated as free=FALSE.

Other Specification Styles

Since R is a full programming language and the OpenMx specification structure is

flexible, there are many styles of model specification that could be used to create identical

statistical models. We expect several styles will emerge as users become acquainted with

the possibilities. One style that has become common among the core programming team

members is to specify each of the MxMatrices separately, assigning them to R variables

early in a script. Later, these predefined matrices can be combined into different model

configurations somewhat like using Lego blocks. This method results in scripts that bear

OpenMx 18

little resemblance to traditional SEM scripts, but these Lego–style scripts can be easier to

write, debug, and maintain.

Summary

The OpenMx project is full–featured, open source, SEM software that runs on most

available operating systems. The software runs in the R statistical computing

environment. The user interface is designed to be: i) flexible in that there are many ways

in which models can be defined; ii) powerful in that models can be specified without

relying on hidden mechanisms; and iii) extensible in that there are facilities to add new

objective functions and optimization methods.

A wide variety of SEM models can be fit with OpenMx. A few of the more popular

models that are in current use include: confirmatory factor analysis, multivariate

autoregression with cross–lags, latent growth curves, latent mediation, multivariate mixed

effects, multigroup models with constraints, behavioral genetic and genetic epidemiological

models, multivariate ordinal models with threshold estimation, factor mixture models,

latent differential equations, latent class models. All of these models can be (and

sometimes must be) run using full information maximum likelihood estimation.

When independent submodels are specified, OpenMx allows for automatic use of

multiple CPUs in modern multicore systems. When a computer cluster or distributed grid

of computers is available, OpenMx can take advantage of this service to run its

independent submodels on multiple computers simultaneously.

The current article only briefly covers the many features and facilities of OpenMx.

To learn more, obtain a free download of the software, and participate in the OpenSEM

forums please go to http://openmx.psyc.virginia.edu.

OpenMx 19

References

Arbuckle, J. L.(1997). Amos user’s guide. version 3.6. Chicago: SPSS.

Bentler, P. M.(1995). EQS structural equations program manual. Encino, CA:

Multivariate Software.

Browne, M. W., & Mels, G.(1998). RAMONA: SYSTAT for Windows: Advanced

Applications (Ver. 8).

Eaves, L. J., Neale, M. C., & Maes, H. H.(1996). Multivariate multipoint linkage analysis

of quantitative trait loci. Behavior Genetics, 26, 519-526.

Everitt, B. S., & Hand, D. J.(1981). Finite mixture distributions. Chapman and Hall.

Fox, J.(2009). sem: Structural Equation Models. (R package version 0.9–19)

Ihaka, R., & Gentleman, R.(1996). R: A language for data analysis and graphics. Journal

of Computational and Graphical Statistics, 5 (3), 299–314.

Jöreskog, K. G.(1967). Some contributions to maximum likelihood factor analysis.

Psychometrika, 32, 443-482.

Jöreskog, K. G., & Sörbom, D.(1996). LISREL 8: A guide to the program and

applications (2nd ed.). Chicago: Scientific Software International.

Longford, N. T., & Muthèn, B.(1992). Factor analysis for clustered observations.

Psychometrika, 57, 581-597.

Marcoulides, G., & Schumacker, E. (Eds.). (1996). Advanced structural equation modeling.

Hillsdale NJ: Lawrence Erlbaum.

McArdle, J. J., & Hamagami, F.(1996). Multilevel models from a multiple group

structural equation perspective. In G. Marcoulides & E. Schumacker (Eds.),

Advanced structural equation modeling (p. 89-124). Hillsdale NJ: Lawrence Erlbaum.

McLachlan, G. J., & Peel, D.(2000). Finite mixture models. New York: Wiley.

Moore, G. E.(1965). Cramming more components onto integrated circuits. Electronics,

38 (8).

OpenMx 20

Muthén, B. O., L. K. & Muthén.(1998). Mplus user’s guide. Los Angeles: Muthén &

Muthén.

Neale, M. C.(1998). Modeling interaction and nonlinear effects with mx: A general

approach. In G. Marcoulides & R. Schumacker (Eds.), Interaction and non-linear

effects in structural equation modeling (p. 43-61). Lawrence Erlbaum Associates.

Neale, M. C., Boker, S. M., Xie, G., & Maes, H.(2006). Mx: Statistical modeling (7th ed.).

Box 980126 Richmond VA: Department of Psychiatry, Virginia Commonwealth

University.

PROC CALIS. (2009). Cary, NC: SAS Institute, Inc.

SEPath. (2009). Tulsa, OK: StatSoft, Inc.

Sörbom, D.(1974). A general method for studying differences in factor means and factor

structures between groups. British Journal of Mathematical and Statistical

Psychology, 27, 229-239.

Wright, S.(1921). Correlation and causation. Journal of Agricultural Research, 20,

557-585.

OpenMx 21

Author Note

Funding for this work was provided by NIH Grant 1R21DA024304–01. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views of the National Institutes of

Health. The core development team would also like to thank a large group of beta testers

including Dorothy Bishop, Greg Carey, Pascal Deboeck, Emilio Ferrer, Christopher

Hertzog, Kevin Grimm, Ken Kelley, Matthew Keller, Michael Kubovy, Jean-Philippe

Laurenceau, Todd Little, Diane Lickenbrock, Gitta Lubke, John J. McArdle, Sam

McQuillin, Sarah Medland, John Nesselroade, Joseph Rausch, William Revelle, Michael

Scharkow, James Steiger, Melissa Sturge-Apple, Stephen Tueller, Jens Vogelgesang,

Theodore Walls, Keith Widaman, Timothy York. Correspondence may be addressed to

Steven M. Boker, Department of Psychology, The University of Virginia, PO Box 400400,

Charlottesville, VA 22903, USA; email sent to boker@virginia.edu; or browsers pointed to

http://openmx.psyc.virginia.edu.

OpenMx 22

Figure Captions

Figure 1. An MxModel is a data object that contains metainformation and lists of other Mx

objects.

Figure 2. An MxMatrix is a data object that contains metainformation and five R matrices.

Figure 3. MxModels can contain lists of submodels.

Figure 4. Equality constraints can be defined between submodels.

Figure 5. Labels can be used to constrain a matrix element to be equal to a matrix element

from an algebraic result.

Figure 6. A simple confirmatory factor analysis model as a RAM–style path diagram.

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

MxModel

MxData

MxMatrices

MxAlgebras

MxObjective

optionsMxConstraints

MxModels

zero or more zero or one

name type independent

output

 independent

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

MxModel B MxModel C

MxModel A

"d"

"d" "d"

"d"

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

dimnamesnrows ncols nametype

values labels free lbounds

 MxMatrix

ubounds

MxModel A

mxAlgebra "C[2,2]"

"C[1,1]"

"C[1,1]"

"C" = exp(Z) %*% W

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

F1 F2

1 1

